
基本资料

IGBT 模组 额定电压 690 V_{RMS} 额定输出电流 800A_{RMS}

- ·大功率变换器 ·风力发电 ·电机驱动

拓扑	半桥
应用	逆变器
负载类型	电阻、电感
母线电容	1.47mF
散热方式	强制风冷(不包括风机)
传感器	温度传感器
IGBT 驱动信号	电信号
型号	FPS080H171TA001
	•

最大额定参数

集电极-发射极电压	IGBT; T _{vi} = 25°C	V _{CES}	1700	V
重复峰值反向电压	Diode; T _{vi} = 25°C	VRRM	1700	V
	· · ·	V RRM		-
直流母线电压	没有开关; t=5s, 每天一次	V _{DC}	1450	V
绝缘管理	按照安装高度 2000m	V _{line}	690	V _{RMS}
绝缘测试电压	按照 EN 50178, f = 50 Hz, t = 5 s	V _{ISOL}	2.5	kV _{RMS}
IGBT 结温	在开关条件下	T _{vj-IGBT}	150	°C
二极管结温	在开关条件下	T _{vj-DIO}	125	°C
最低储存温度		T _{stor}	-40	°C
最高储存温度		T _{stor}	65	°C
最低工作环境温度		T _{amb}	-25	°C
最高工作环境温度		T _{amb}	55	°C
辅助电源电压		V _{aux}	15	V
逆变器部分最高开关频率		f _{sw2}	3.5	kHz

提示 详细的最大额定值在以下专门章节中说明

特性参数

直流部分

最小值 典型值 最大值

额定电压	持续模式	V _{DC}	1050	V
过压关断	在 150 μs 内		1300	V
	4 00 % 4 10 0	C _{DC}	1.47	mF
电容	1 s, 30 p, 额定容差. ±10 %	类型	电解电容	

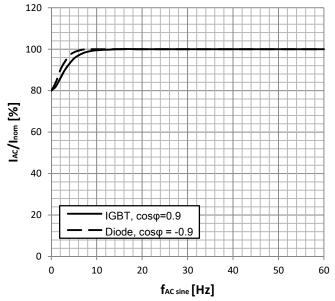
提示 工作在 1100V 以上时需要根据 EN 61071 限制工作时间 超过 1200V 时限制短路保护

逆变器部分

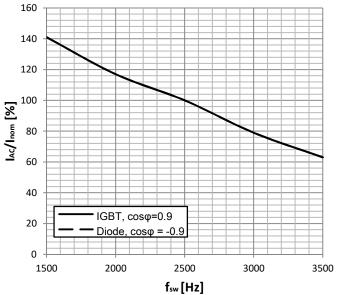
最小值 典型值 最大值

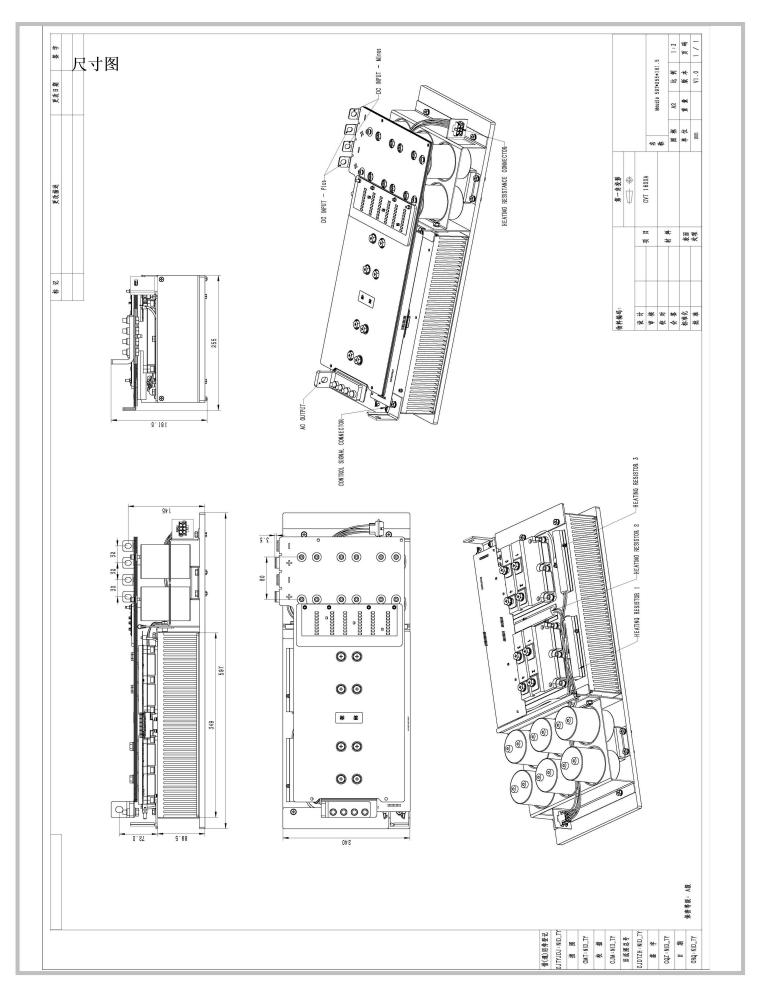
额定持续电流	$V_{DC} = 1050 \text{ V}, V_{AC} = 690 \text{ V}_{RMS}, \cos(\phi) = 0.9, f_{AC \text{ sine}} = 50 \text{ Hz}, f_{sw} = 2000 \text{ Hz}, T_{inlet} = 55^{\circ}\text{C}$	I _{AC}	800		ARMS
额定持续电流下 150% 过载 能力	$I_{AC\ 150\%}$ =800 A _{RMS} , $t_{on\ over}$ = 0.01 s, $t_{recovery}$ = 135 s	IAC over1		1200	Arms
过流关断	在 15 μs 内	I _{AC OC}	1600		A _{peak}
损耗	$\begin{array}{l} I_{AC} = 800 \; A, \; V_{DC} = 1050 \; V, \; V_{AC} = 690 \; V_{RMS}, \\ cos(\phi) = 0.9, \; f_{AC \; sine} = 50 \; Hz, \; f_{sw} = 2000 \; Hz, \; T_{inlet} = 55 \; ^{\circ}C \end{array}$	P _{loss}	4200		W

控制接口

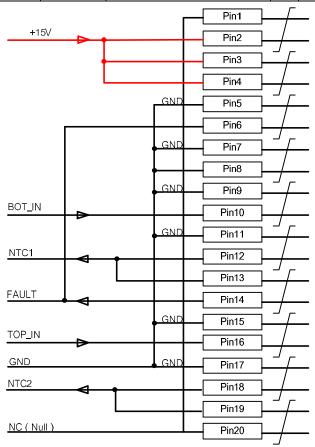

			min.	typ.	max.	
辅助电源电压		V _{aux}	13	15	16	V
NTC 电阻	$T_{NTC} = 25^{\circ}C$	R _{NTC}		10		kΩ
最小开通时间(IGBT)		t _{on min}	5			μs
最小关断时间(IGBT)		t _{off min}	5			μs

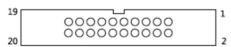
系统参数 min. max. typ. 根据 IEC 61800-3 在指定接口 V_{Burst} 2 kV 功率 EMC 鲁棒性 1 V_{Burst} kV 控制 $V_{\text{surge}} \\$ kV 辅助 (15V) 储存温度 -40 65 °C PCB、母线电容、母线,不含冷却介质 工作环境温度 $T_{\text{op amb}}$ -25 55 °C V_{air} 2 冷却气体流量 PCB、母线电容、母线,标准大气 m/s Rel. F % 0 85 湿度 没有凝结 10 振动 m/s² 根据 IEC 60721 100 m/s² 冲击 根据 IEC 60721 IP00 防护等级 2 污染等级 尺寸 长×宽×高 610 267.5 177 $\mathsf{m}\mathsf{m}$ 35 总重量 kg


风冷散热			min.	typ.	max.	
结壳热阻 – IGBT		R _{th} (J-C) IGBT			0.09	K/W
结壳热阻- Diode		R _{th (J-C) Diode}			0.02	K/W
壳到散热器热阻	安装扭矩 5Nm,硅脂 1W/(m·K)	R _{th} (C-H)			0.012	K/W
散热器到环境热阻	流速=504m³/h, T _a =55°C, 500m 海拔高度	R _{th} (H-A)			0.030	K/W
冷却进口温度		T _{inlet}	-25		55	°C
散热器材料				铝		


 $f_{AC\, sine}$ - 降额曲线 IGBT (电动), Diode (发电) V_{DC} = 1050 V, VAC = 690 V, fsw = 2.5 kHz, $cos\phi$ = +/- 0.9 T_{inlet} = 55 °C 普通散热条件

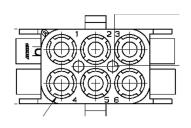
 f_{sw} -降额曲线 IGBT (电动), Diode (发电) V_{DC} = 1050 V, V_{AC} = 690 V, $f_{AC\,sine}$ = 50 Hz, $cos\phi$ = +/- 0.9 T_{inlet} = 55 °C 普通散热条件



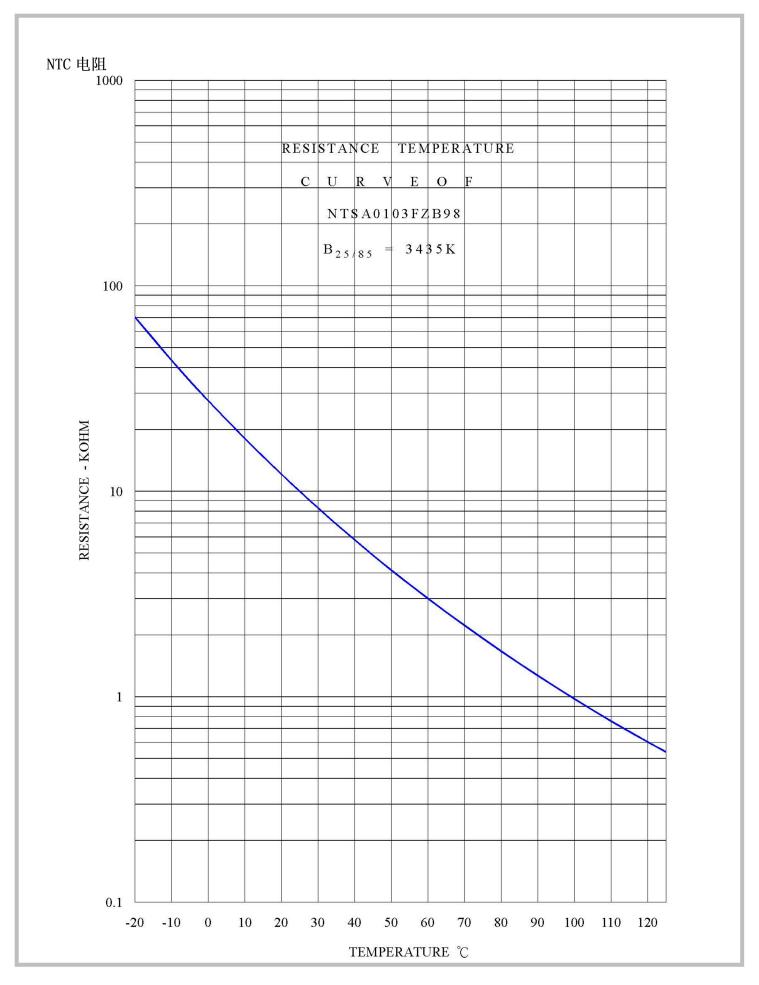


电气连接

控制信号连接器


引脚	名称	功能	引脚	名称	功能
1	NC	无定义、和 Pin20 短接	2	VDC	+15V 供电
3	VDC	+15V 供电	4	VDC	+15V 供电
5	GND	GROUND	6	FAULT	故障返回 (低故障)
7	GND	GROUND	8	GND	GROUND
9	GND	GROUND	10	BOT-IN	下管信号输入
11	GND	GROUND	12	NTC1	1#NTC 信号返回
13	NTC1	1#NTC 信号返回	14	FAULT	故障返回 (低故障)
15	GND	GROUND	16	TOP-IN	上管信号输入
17	GND	GROUND	18	NTC2	2#NTC 信号返回
19	NTC2	2#NTC 信号返回	20	NC	无定义、和 Pin1 短接

加热电阻连接器


引脚	名称	功能	引脚	名称	功能
1	R11	R1 加热电阻引脚 1	2	R12	R1 加热电阻引脚 2
3	R21	R2 加热电阻引脚 1	4	R22	R2 加热电阻引脚 2
5	R31	R3 加热电阻引脚 1	6	R32	R3 加热电阻引脚 2

Rev. 2 - 11.11.2020

