

6FHS0660MC1G15V-Y0201 产品说明书

概述

6FHS0660MC1G15V-Y0201 驱动核是 Firstack 针对 ANPC 三电平系统开发的高性能数字驱动核,驱动采用 CPLD 为数字控制核心,保护功能齐全,内置故障管理系统,实时将变流器的工作状态上传上位机,为失效变流器现场"大数据管理"提供支持。完美解决 ANPC 拓扑中"关断时序"以及"大换流回路关断尖峰"这两大难题,使得 ANPC 拓扑的可靠性可以媲美两电平,能让客户像两电平一样使用 ANPC 三电平。

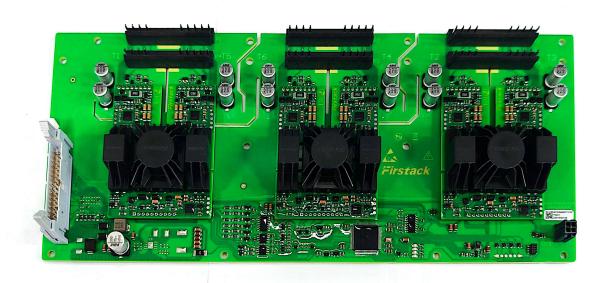


图1 产品图片

核心优势:

- √ 单路输出 6W/最大峰值电流 60A
- √ 适用于最高 2300V 的 XHP 模块
- √ 短路保护(软关断) 欠压保护
- √ 故障时序保护

典型应用:

- ✓ 光伏逆变器
- √ 储能逆变器
- ✓ 中压交流传动
- √ 风电变流器

目录

概述
系统框架图3
使用步骤及注意事项4
机械尺寸图
引脚定义
状态指示灯说明8
驱动参数g
主要功能说明12
◆ 短路保护12
◆ 欠压保护12
◆ 断线检测12
◆ 窄脉冲抑制13
◆ NTC 温度采样
◆ 智能故障管理系统14
变更信息16
订购信息16
技术支持17
法律免责声明17
联系方式17

系统框架图

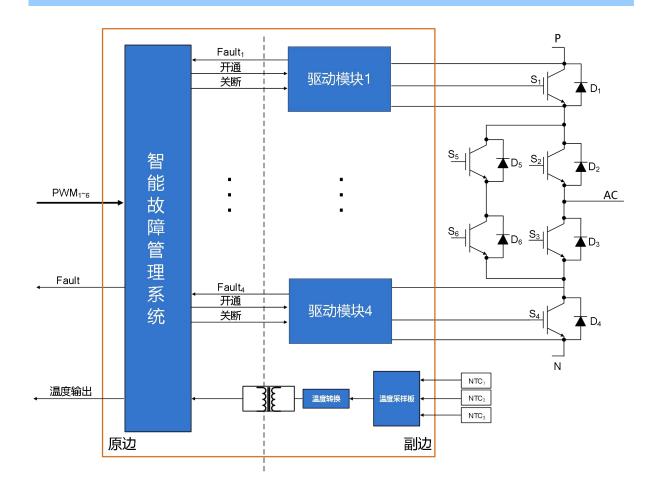
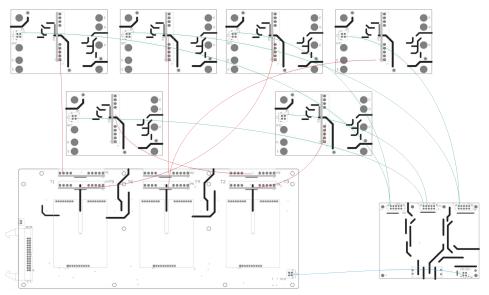



图 2 系统框架图

红色为GE线束 绿色是副边NTC线束 蓝色是原边NTC线束

图 3 连接示意图

使用步骤及注意事项

驱动器简便使用的相关步骤如下:

1. 选择合适的驱动器

使用驱动器时,应注意该驱动器适配的 IGBT 模块型号。对于非指定 IGBT 模块无效, 使用不当可能会导致驱动和模块失效。

2. 将驱动器安装到 IGBT 模块上

对 IGBT 模块或驱动器的任何处理都应遵循国际标准 IEC 60747-1 第IX章或欧洲标准 EN 61340-5-1 要求的静电敏感器件保护的一般规范(即工作场所、工具等必须符合这些标准)。

如果忽视这些规范, IGBT 和驱动器都可能会损坏。

3. 将驱动器连接到控制单元

将驱动器接插件连接到控制单元,并为驱动器提供合适的供申申压

4. 检查驱动器功能

检查门极电压:对于关断状态,额定门极电压在相应的数据手册中给出,对于导通状态,该电压为15V。另请分别检查对应有控制信号和无控制信号时驱动器的输入电流。这些测试应在安装前进行,因为安装后可能无法接触到门极端子。

5. 设置和测试功率单元

系统启动之前,建议用单脉冲或双脉冲测试方法分别检查每个 IGBT 模块。 Firstack 特别建议用户要确保 IGBT 模块即使在最恶劣的条件下也不会超过 SOA 规定 的工作范围,因为这强烈依赖于具体的变换器结构。

机械尺寸图

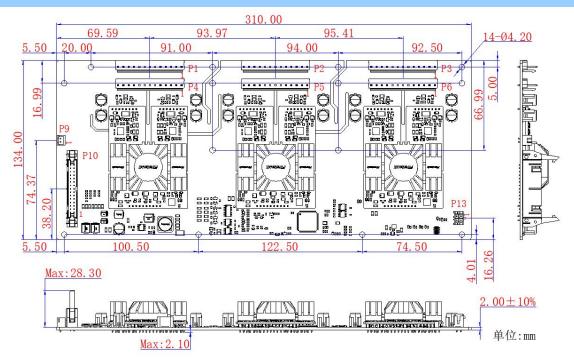


图 4 尺寸图(单位: mm)

备注: 1. 板厚公差±10%;

- 2. 其余尺寸公差参考 GB/T1804-m。
- 3. 图中所有安装孔必须作为固定使用,否则连接器插拔应力过大很可能造成驱动损坏。同时安装孔务必采用塑料螺柱或其他绝缘材料螺柱固定,否则有安规风险问题。
- 4. 以下表中接插件序号 1 和序号 2 只可选一种,输入口垂直于板子成为序号 1,输入口平行于板子为序号 2。
 - 5. 尺寸图只做尺寸参考,与实物的一致性参考说明书实物图。

接插件厂家及型号

序号	位号	厂家	型号	推荐配套端子
1	P10	Nextron	Z-230010830209 (立式)	FC-30P
2	P11	Nextron	Z-230011830209(卧式)	FC-30P
3	P1, P2, P3, P4, P5, P6	WCON	WF3963-WSH13B02	WF3963-H13B01
4	P9	JST	B2B-XH-A	XHP-2
5	P13	长江	C3030WV-2x2P	C3030HF-2x2P

引脚定义

15V 电源输入的 P10 或 P11 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	1T020	连接至 Pin20	2	V_{DC}	+15V 电源
3	V_{DC}	+15V 电源	4	V_{DC}	+15V 电源
5	GND	原边参考地	6	S0	故障汇总
7	GND	原边参考地	8	GND	原边参考地
9	GND	原边参考地	10	IN1	T1 管 PWM 信号
11	GND	原边参考地	12	V_{DC}	+15V 电源
13	V_{DC}	+15V 电源	14	V_{DC}	+15V 电源
15	GND	原边参考地	16	IN2	T2 管 PWM 信号
17	GND	原边参考地	18	V_{DC}	+15V 电源
19	GND	原边参考地	20	1T020	连接至Pinl
21	GND	原边参考地	22	IN3	T3 管 PWM 信号
23	GND	原边参考地	24	IN4	T4 管 PWM 信号
25	GND	原边参考地	26	IN5	T5 管 PWM 信号
27	GND	原边参考地	28	IN6	T6 管 PWM 信号
29	GND	原边参考地	30	FOUT	频率输出

P1, P4 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	T5_GATE	T5 门极信号	8	NC	该针拔除
2	10N-T5	T510V	9	NC	该针拔除
3	ACOM-T5	T5 参考地	10	Vcesat-T1	T1 检测信号
4	15V-T5	T5_15V	11	15V-T1	T1_15V
5	Vcesat-T5	T5 检测信号	12	ACOM-T1	T1 参考地
6	NC	该针拔除	13	T1_GATE	 T1 门极信号
7	NC	该针拔除			

P2, P5 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	T4_GATE	T4 门极信号	8	NC	该针拔除
2	10N-T4	T410V	9	NC	该针拔除
3	ACOM-T4	T4 参考地	10	Vcesat-T6	T6 检测信号

4	15V-T4	T4_15V	11	15V-T6	T6_15V
5	Vcesat-T4	T4 检测信号	12	ACOM-T6	T6 参考地
6	NC	该针拔除	13	T6_GATE	T6 门极信号
7	NC	该针拔除			

P3,P6 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	T3_GATE	T3 门极信号	8	NC	该针拔除
2	10N-T3	T310V	9	NC	该针拔除
3	ACOM-T3	T3 参考地	10	Vcesat-T2	T2 检测信号
4	15V-T3	T3_15V	11	15V-T2	T2_15V
5	Vcesat-T3	T3 检测信号	12	ACOM-T2	T2 参考地
6	NC	该针拔除	13	T2_GATE	
7	NC	该针拔除			

P13 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	GND	原边地信号	3	GND	原边地信号
2	NTC_OUT	温度输出信号	4	NTC_OUT	温度输出信号

P9 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	PT2-1	外部 PT2 pin1	2	PT2-2	外部 PT2 pin2

^{*}驱动采样12个模块的温度信号

^{*}NTCx 为模块 x 的温度信号

状态指示灯说明

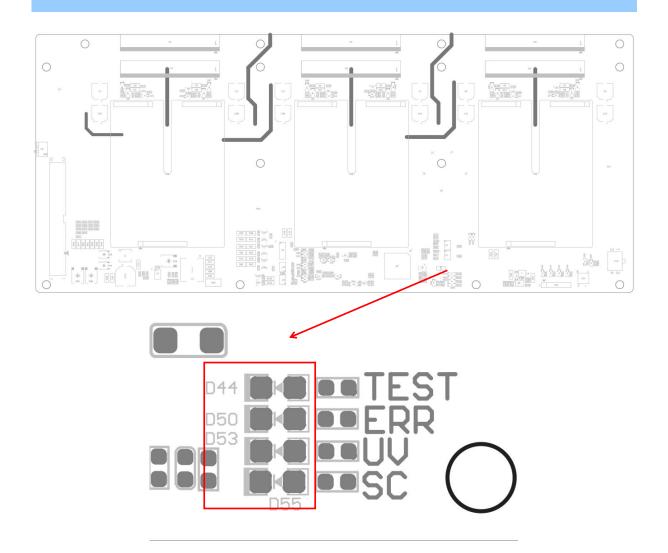


图 5 状态指示灯

为了方便客户使用,Firstack驱动板上增加了若干状态指示LED,便于客户了解驱动板及变流器工作状态,具体解释如下:

状态指示灯

序号	位号	丝印	注释	颜色
1	D44	TEST	原边供电正常, 且无任何故障时亮, 否则灭	绿色
2	D50	ERR	除欠压, 短路以外的其他故障触发及常亮, 除非重启	红色
3	D53	UV	一次欠压触发即常亮,除非重启	红色
4	D55	SC	一次短路触发即常亮,除非重启	红色

驱动参数

绝对最大额定值

参数	备注	最小	最大	单位
V_{DC}	对地		15	V
输入输出逻辑电平	对地	0	15. 5	V
故障返回口电流能力	故障状态下		500	mA
门极最大输出电流			60	A
单路输出功率	$T_A=85$ °C		6	W
测试电压(50Hz/1min)	原边对副边	9100	6	$V_{\scriptscriptstyle RMS}$
观 民 电	副边对副边	6000		$V_{\scriptscriptstyle RMS}$
工作温度		-40	85	$^{\circ}$
存储温度		-40	85	$^{\circ}\!$

推荐工作条件

参数	备注	最小值	典型值	最大值	单位
$V_{ ext{DC}}$			15		V
IN_x			15		V

电气特性

电源	备注	最小值	典型值	最大值	单位
电源电流	不带载,注1		0.4		A
耦合电容	原副边,注 2		12		рF
原边电源监测					
阈值			11.7		V
副边电源监测					
正压欠压阈值			12		V
负压欠压阈值			-5		V
输入输出逻辑					
输入阻抗			3. 5		kΩ
开通阈值	15V PWM 输入, 高开通		7. 5		V
关断阈值	15V PWM 输入, 高开通		4.8		V
NTC 输出电位			15		V
SOx 输出电位	高正常,低故障(脉冲式)		15		V
短路保护					
V _{CE} 监测阈值			11		V
	T1、T4, 注 3		10		us
响应时间	T2、T3, 注 3		10		us
	T5、T6, 注 3		10		us
阻断时间			100		ms

✓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		OI IIDOOOMICI GIO	1 10201
时间特性			
	T1、T4, 注 4	7700	ns
开通延时	T2、T3, 注 4	7700	ns
	T5、T6, 注 4	7700	ns
	T1、T4, 注 5	7700	ns
关断延时	T2、T3, 注 5	7700	ns
	T5、T6, 注 5	7700	ns
	T1、T4, 注 6	50	ns
上升时间	T2、T3, 注 6	50	ns
	T5、T6, 注 6	50	ns
	T1、T4, 注 7	50	ns
下降时间	T2、T3, 注 7	50	ns
	T5、T6, 注 7	50	ns
输出特性			
门极开通电压		15	V
门极关断电压		-10	V
电气绝缘			
爬电距离	原副边, 注8	40	mm
电气间隙	原副边	30. 5	mm
爬电距离	副副边	17	mm
电气间隙	副副边	14	mm
NTC 温度采集			
NTC 温度采集范围		-40 150	${\mathbb C}$
故障输出			
故障信号指示时间	注 9	100	ms
死区时间			
(T1&T3) (T2&T4)死区时间	注 10	3	us
窄脉冲抑制			
窄脉冲滤除时间	注 11	6000	ns

除非有特殊说明,以上数据都是基于 25℃环温以及 V_{IN}=15V 环境下测试注解说明:

- 1. 电源电流: 在没有输入任何 PWM 信号, 但连接 IGBT 模块
- 2. 耦合电容:耦合电容值在表中所给值范围之内
- 3. 响应时间:短路保护响应时间指从发生故障到开始执行软关断
- 4. 开通延时: 从原边输入的 PWM 信号上升沿传输到副边门极驱动上升沿所需的时间
- 5. 关断延时: 从原边输入的 PWM 信号下降沿传输到副边门极驱动下降沿所需的时间
- 6. 上升时间:从门极关断电压 (-10V)的 10%至门极开通电压 (+15V)的 90%的时间量
- 7. 下降时间:从门极开通电压(+15V)的90%至门极关断电压(-10V)的10%时间量

- 8. 爬电距离: 参照 IEC61800-5-1-2007
- 9. 故障信号时间: Fault 信号正常时为高电平, 当驱动检测到故障时, Fault 信号输出 100ms 的低电平
- 10. 死区时间: 当控制板所设时间无死区或者小于 3us, 驱动板自身会有 3us 死区; 当控制板 所设时间大于 3us, 按照控制板时间执行
- 11. 窄脉冲滤除时间:能滤掉的最大窄脉冲为 6000ns,在实际可能会小于这个值

主要功能说明

◆ 短路保护

驱动电路通过检测 IGBT 开通时的集电极电压 Vce 来判断 IGBT 是否处于短路状态。

集电极电压通过高压二极管来检测。当 V_{CE} 电压超过设定阈值,驱动判定IGBT处于短路状态,同时将故障返回给上位机。驱动会根据先关外管再关内管的顺序关断IGBT。

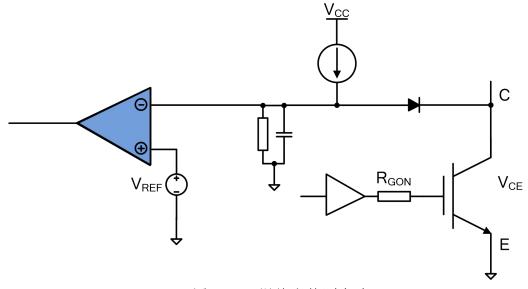
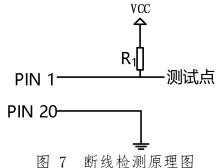


图 6 Vc 退饱和检测电路

◆ 欠压保护


驱动板同时监测副边侧正负电源。 当副边侧正电压或者负电压低于阈值电压时, 驱动电路将判定发生了欠压故障,将反馈一个故障信号给上位机。驱动会根据先关外管 再关内管的顺序关断 IGBT。

对于 IGBT 桥臂, Firstack 智能驱动强烈建议不要让桥臂中的任一个 IGBT 工作在欠 压状态。由于 C_{cc} 的存在,当桥臂中的某个 IGBT 开通时,其带来的高 dv/dt 可通过 C_{cc} 耦合到另一个 IGBT,导致另一个 IGBT 微导通。同时,较低的门极电压,将增大 IGBT 的开关损耗。

◆ 断线检测

驱动将输入牛角 Pin1 和 Pin20 相连,可以进行断线检测。以下是推荐测试电路,若牛角线插牢接紧,测试点检测到的电压是 0V;若牛角线有某端未插紧,测试点检测到的电压是 VCC 的电压,以此来做到断线检测的目的。

◆ 窄脉冲抑制

在很多应用的场合,模组可能会遇到窄脉冲的情况,IGBT 每次窄脉冲关断都会面临 关断尖峰过高的风险。我们通过检测输入信号的时间,时间小于 6000ns 时,会直接将 该信号滤除,需要以实际测试情况为准。

◆ NTC 温度采样

随着模块封装技术的进步,越来越多的模块内部开始集成温度传感器,NTC 就是其中的一种方式,像 PrimePACK™、EconoDUAL™等模块,内部就集成了 NTC。

Firstack 智能驱动集成了温度监测电路, 通过压频转换电路,将温度信号转换为 频率信号,同时通过隔离器件将频率信号 告知上位机。

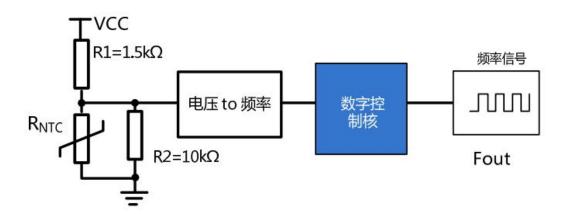


图 8 温度监测原理图

6FHS0660MC1G15V-Y0201 将接受采样板传递的频率信号输出给主控。

- $*F_{\text{OUT}}=0.1*f_{\text{CLKIN}}+0.8*(V_{\text{IN}}/V_{\text{REF}})*f_{\text{CLKIN}}$
- $*f_{CLKIN}=32.768kHz$
- $*V_{IN}=V_{CC}*R/(R+1.5K\Omega)$
- * $R=R_{NTC}//10K\Omega$; $V_{CC}=5V$; $V_{RFF}=5V$

◆ 智能故障管理系统

在 NPC I 型三电平中,直流母线电压 $V_{DC-LINK}$ 高于任意一个 IGBT 的耐压值,因此不论是正常工作或故障情况下,都必须保证外管 $S_4(S_1)$ 先于内管 $S_3(S_2)$ 关断,否则 $S_3(S_2)$ 将因为独自承受全部的直流母线电压 $V_{DC-LINK}$ 而损坏。

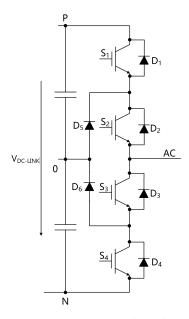


图 9 NPC I 型三电平拓扑

在传统的 I 型三电平驱动设计时,一般是通过上位机来保证正确的关断时序,比如当 S_3 发生短路故障时,驱动板先将 S_3 的故障信号告知上位机,再由上位机来统一协调关断时序,由此也就存在如下几个风险:

1、短路保护时间超出 IGBT 最大承受时间: S_3 自身短路检测时间一般在 8us 左右,再加上故障通信时间、上位机滤波时间、以及 S_4 的关断时间(高压大功率模块关断时间普遍较长,在 $4^{\sim}6us$),整个保护时间将超出 10us,也就超出了 IGBT 的短路安全工作范围 2、保护依赖于上位机: 从单点失效分析来看,当上位机失效时,保护无法正常完成,存在安全隐患

另外一个风险是,传统的驱动 I_c 乃至绝大部分即插即用驱动器,在发生欠压故障时,往往是直接关断 IGBT,不适用于 NPC I 型三电平方案,造成极大的安全隐患。

基于以上的分析, Firstack 推出了专门针对 NPC I 型三电平的驱动解决方案:通过在原边集成 Firstack 特有的"智能故障管理系统",可以确保任何工况下的正确关断时序。

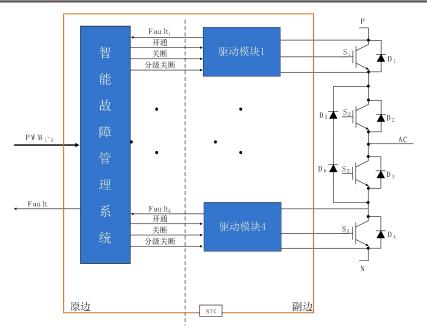


图 10 智能故障管理系统

智能故障管理系统将实时监测所有六路 PWM 信号与所有六路 IGBT 状态,再通过 Firstack 独有的控制算法,给出最优的操作指令。当整机在连续运行中,发生如下故障时,可以确保安全:

- 1: PWM 指令故障: 当上位机受到干扰发出错误指令,或 PWM 传输路径受到干扰,在驱动侧出现错误指令
- 2:接插件脱落:在整机运行中,接插件由于振动等因素,出现脱落,造成 PWM 指令状态不受控
- 3: 驱动供电异常: 在整机运行中, 因为供电端出现故障, 引起驱动供电异常
- 4: 短路/欠压故障

变更信息				
变更日期	变更内容	备注		
2025-06-09	初版			
2025-09-02	修改尺寸图和实物图			

订购信息

6FHS0660MC1G15V-Y0201 可以支持多个厂家不同型号的 IGBT 模块,如有购买需求,请联系工作人员,我们将提供最符合您需求的驱动。

下图为驱动的命名规则, 您可根据命名规则提出需求来购买。

(1) 6表示 6 通道; (2) FHS 表示典型代码; (3) 06表示驱动功率 6W; (4) 60表示峰值电流 60A; (5) M表示磁隔离; (6) CIG表示典型代码; (7) 15表示电源 15V; (8) V表示立式输出接口; (9) XXXXXX表示驱动流水码。

核板型号命名:

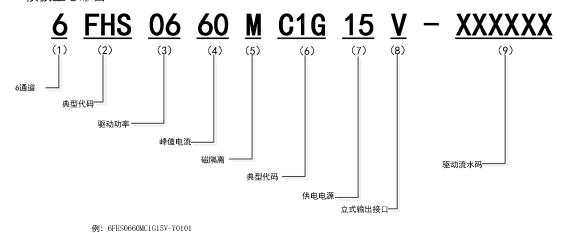


图 11 命名规则

技术支持

Firstack 专业的团队会为您提供业务咨询、技术支持、产品选型、价格与交货周期等相关信息,保证在48小时内针对您的问题给予答复。

法律免责声明

本说明书对产品做了详细介绍,但不能承诺提供具体的参数对于产品的交付、性能或适用性。本文不提供任何明示或暗示的担保或保证。

Firstack 保留随时修改技术数据及产品规格,且不提前通知的权利。适用 Firstack 的一般交付条款和条件。

联系方式

电话: +86-571 8817 2737

传真: +86-571 8817 3973

邮编: 310000

网址: www.firstack.com

邮箱: sales01@firstack.com

地址: 杭州市上城区同协路 1279 号西子智慧产业园 5 号楼 4-5 楼

