

4FSC0110T12A1C 产品说明书

概述

4FSC0110T12A1C 驱动核是针对中小功率逆变器开发的无保护功能专用 IGBT 驱动核, 可适用于两电平, T型三电平, NPC I型三电平等多种拓扑。驱动能力强大, 可实现单路 1.2W(Ta=85℃)的驱动功率。

4FSC0110T12A1C 是四通道驱动核,外围应用电路简单,客户无需在调试驱动核上投入精力,即可安全可靠的驱动 IGBT。

核心优势:

- 1.2W/10A
- 最高支持 1200V 模块
- 适用于多电平拓扑

应用领域:

- 光伏
- 储能

图 1 4FSC0110T12A1C

功能框架图

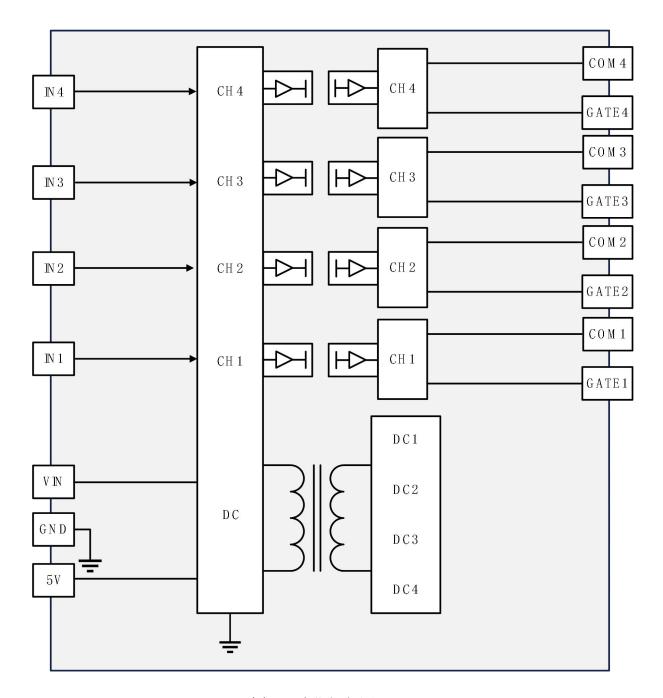


图 2 功能框架图

使用步骤及注意事项

驱动器简便使用的相关步骤如下:

1. 选择合适的驱动器

使用驱动器时,应注意该驱动器适配的 IGBT 模块型号。对于非指定 IGBT 模块无效, 使用不当可能会导致驱动和模块失效。

2. 将驱动器安装到 IGBT 模块上

对 IGBT 模块或驱动器的任何处理都应遵循国际标准 IEC 60747-1 第IX章或欧洲标准 EN 100015 要求的静电敏感器件保护的一般规范(即工作场所、工具等必须符合这些标准)。

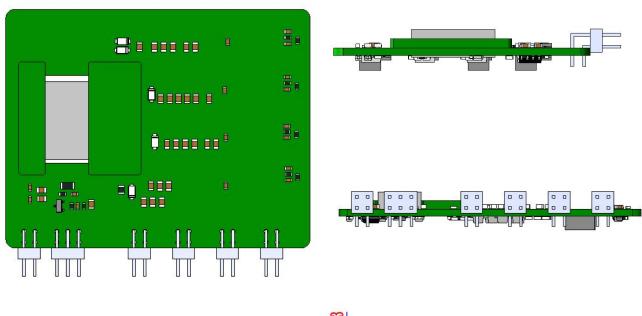
如果忽视这些规范, IGBT 和驱动器都可能会损坏。

3. 将驱动器连接到控制单元

将驱动器接插件(光纤)连接到控制单元,并为驱动器提供合适的供电电压。

4. 检查驱动器功能

检查门极电压:对于关断状态,额定门极电压在相应的数据手册中给出,对于导通状态,该电压为15V。另请分别检查对应有控制信号和无控制信号时驱动器的输入电流。对于Firstack的数字驱动器,驱动器提供合适的供电电压后,驱动状态指示灯TEST(绿色)常亮。


这些测试应在安装前进行, 因为安装后可能无法接触到门极端子。

5. 设置和测试功率单元

系统启动之前,建议用单脉冲或双脉冲测试方法分别检查每个 IGBT 模块。 Firstack 特别建议用户要确保 IGBT 模块即使在最恶劣的条件下也不会超过 SOA 规定 的工作范围,因为这强烈依赖于具体的变换器结构。

3D 及机械尺寸图

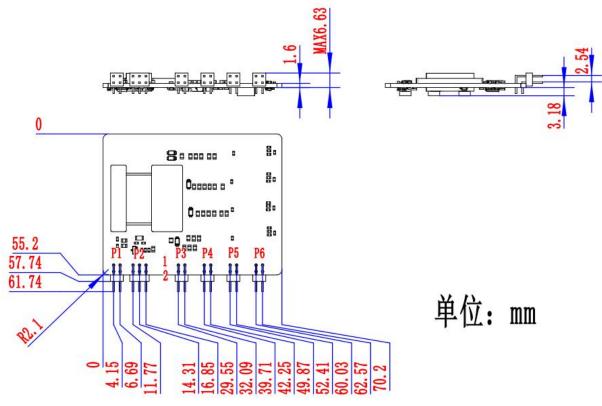


图 3 D 及机械尺寸图

备注: 1. 板厚公差±10%;

2. 其余尺寸公差参考 GB/T 1804-m。

引脚定义

输入P1引脚定义:

引脚	命名	注释	引脚	命名	注释
1	TMO	3 管 PWM 信号	9	IN4	4 管 PWM 信号
1	IN3	0n=5V/0ff=0V	Δ	1N4	0n=5V/0ff=0V
2	O TN1	1 管 PWM 信号	4	TMO	2 管 PWM 信号
3 IN1	INI	0n=5V/0ff=0V	4	IN2	0n=5V/0ff=0V

输入P2引脚定义:

引脚	命名	注释	引脚	命名	注释
1	GND	原边电源参考地	2	GND	原边电源参考地
3	VIN	12V 电源	4	VIN	 12V 电源
5	5V	5V 电源	6	5V	5V 电源

输出 P3 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	COM4	副边4管参考地	2	COM4	副边4管参考地
3	GATE4	副边4管门极信号	4	GATE4	副边4管门极信号

输出 P4 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	COM3	副边3管参考地	2	COM3	副边3管参考地
3	GATE3	副边3管门极信号	4	GATE3	副边3管门极信号

输出 P5 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	COM2	副边2管参考地	2	COM2	副边 2 管参考地
3	GATE2	副边2管门极信号	4	GATE2	副边2管门极信号

输出 P6 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	COM1	副边1管参考地	2	COM1	副边1管参考地
3	GATE1	副边1管门极信号	4	GATE1	副边1管门极信号

驱动参数

绝对最大额定值

参数	备注	最小	最大	单位
VIN	对地	0	15. 5	V
输入输出逻辑电平	对地	0	5. 5	V
门极最大输出电流		-10	10	A
单路输出功率	T _A ≤85°C		1. 2	W
:제(上上 (FOII /1 ·)	原边对副边	2800		$V_{\scriptscriptstyle RMS}$
测试电压(50Hz/1min)	副边对副边	2800		$V_{\scriptscriptstyle RMS}$
工作温度		-40	+85	$^{\circ}$ C
存储温度		-40	+105	$^{\circ}$ C

推荐工作条件

参数	备注	最小值	典型值	最大值	单位
VIN		11.5	12	12. 5	V
IN_{x}	高电平	4. 5	5	5. 5	V

电气特性

备注	最小值	典型值	最大值	单位
不带载,注1		0. 05		A
原副边,注2		20		pF
		7. 1		kΩ
5V PWM 输入, 注 3	2. 9			V
5V PWM 输入, 注 4			2. 7	V
	不带载,注 1 原副边,注 2 5V PWM 输入,注 3	不带载,注 1 原副边,注 2 5V PWM 输入,注 3 2.9	不带载,注 1 0.05 原副边,注 2 20 7.1 5V PWM 输入,注 3 2.9	不带载,注 1 0.05 原副边,注 2 20 7.1 5V PWM 输入,注 3 2.9

时间特性			
开通延时	注 6	195	ns
关断延时	注 7	230	ns
上升时间	注 8	25	ns
下降时间	注 9	25	ns
电源建立延时	注 10	75	ms
输出特性			
门极开通电压		15. 5	V
门极关断电压		-8. 5	V
电气绝缘			
爬电距离	原副边	5	mm
	副副边	5	mm
电气间隙	原副边	5	mm
七 (17)体	副副边	5	

注解说明:

- 1. 电源电流: 在没有输入任何 PWM 信号, 但连接 IGBT 模块;
- 2. 耦合电容: 耦合电容值在表中所给值范围之内;
- 3. 开通阈值: 开通时电平翻转时刻的输入电压值;
- 4. 关断阈值:关断时电平翻转时刻的输入电压值;
- 5. 响应时间: 短路保护响应时间指从发生故障到开始执行软关断;
- 6. 开通延时: 从原边输入的 PWM 信号上升沿传输到副边门极驱动上升沿所需的时间;
- 7. 关断延时: 从原边输入的 PWM 信号下降沿传输到副边门极驱动下降沿所需的时间;
- 8. 上升时间:从门极关断电压(-8.5V)的 10%至门极开通电压(+15.5V)的 90%的时间量;
- 9. 下降时间:从门极开通电压(+15.5V)的90%至门极关断电压(-8.5V)的10%时间量;
- 10. 电源建立延时: 5V 电源控制驱动电源的工作,从 5V 电源建立到副边电源建立的时间量;

应用说明

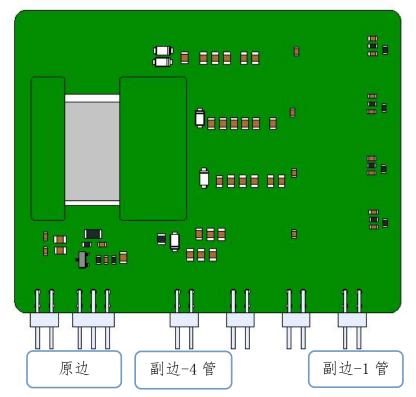


图 4 驱动板原副边示意图

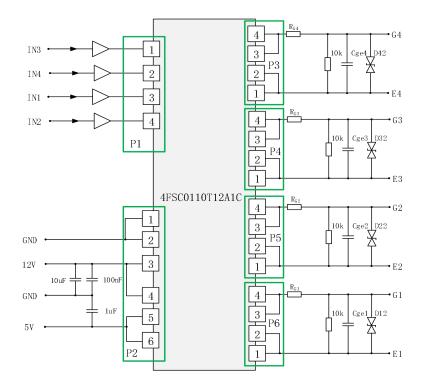


图 5 4FSC0110T12A1C 典型应用图

◆ VIN端口

VIN 端口,原边供电电源,提供10uF+100nF左右的瓷片电容。

◆ GND 端口

GND 端口,原边参考地。

◆ 5V 端口

5V 端口,原边 5V 供电电源,提供 1uF 左右的瓷片电容。5V 不接时驱动电源将无法正常工作。

◆ IN_v端口

IN、为驱动 PWM 输入端口, 可输入 5V 逻辑电平的 PWM 信号。高电平为有效开通信号。

◆ GATE 端口

 GH_x 端口接门极电阻 R_{cx} 至 IGBT 门极,来控制 IGBT 的开关速度。门极 G、E 之间推荐并联 $\geq 10k$ 的电阻(并联使用则为并联后的阻值)。

◆ 门极电容 Cge_x

为了改善 IGBT 的开通和关断过程,可以增加 Cge_x 电容, 一般 Cge_x 电容值取 $0.8^{\sim}1.2$ 倍的 IGBT 输入电容 Cies, 但不推荐,除非模块 datasheet 推荐增加。

◆ 门极钳位二极管 D_x2

为了在短路等极限工况下,防止门极电压被抬升过高,需要增加门极钳位二极管 D_x2 ,建议钳位电压在 16V 左右;推荐使用双向 TVS,推荐型号 SMAJ16CA 为 TVS 管,品牌为 Littelfuse。

变更信息

2025-4-28 初版规格书

订购信息

4FSC0110T12A1C 为通用驱动核产品,可以支持多个厂家不同型号的 IGBT 模块。如有购买需求,请联系工作人员,我们将提供最符合您需求的驱动。

技术支持

Firstack 专业的团队会为您提供业务咨询、技术支持、产品选型、价格与交货周期等相关信息,保证在48小时内针对您的问题给予答复。

法律免责声明

本说明书对产品做了详细介绍,但不能承诺提供具体的参数对于产品的交付、性能或适用性。本文不提供任何明示或暗示的担保或保证。

Firstack 保留随时修改技术数据及产品规格,且不提前通知的权利。适用 Firstack 的一般交付条款和条件。

联系方式

电话: +86-571 8817 2737

传真: +86-571 8817 3973

邮编: 310011

网址: www.firstack.com

邮箱: sales01@firstack.com

地址: 杭州市上城区同协路 1279 号西子智慧产业园 5 号楼 4-5 楼

