

FS06P 系列产品规格书

概述

FS06P 系列是 Firstack 自主研发的 6.5kVpc/6W 隔离驱动电源模块,采用了平面变压 器,为SiC、MOSFET、IGBT门极驱动电路提供安全可靠的驱动电源。

核心优势:

- 原副边绝缘 6.5kVDC
- 输出总功率 6W
- 9-18V 宽范围输入电压
- 可配置输出驱动方案: MOSFET: +15V/-5V; IGBT: +15V/-10V;
 - SIC: +20V/-5V
- 输入欠压保护,输入过压保护,输出过流保护,输出短路 保护, 过温保护

SiC、IGBT、MOSFET

命名结构

FSXXPXXXXNA 系列名称 预留 功率等级 -封装形式 S:SIP 最高输入电压 -D:DIP M:Surface Mount 通用产品 可配置驱动电压

典型应用:

- 储能
- 工业驱动
- 光伏

轨交

原副边耦合电容 8pF

贴装方式

1. 平插

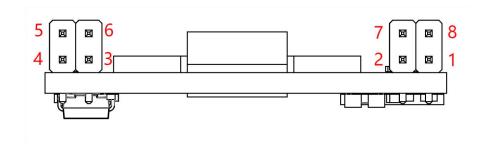


FS06P18GPDNA(正面)

FS06P18GPDNA(背面)

引脚信息

引脚	定义	备注
1	Vin+	标称输入 12V (9-18V)
2	VEN	浮空时正常工作, 拉低时处于休眠模式
3	Vin-	输入地
4	5Vb_GND	5Vb-
5	5Va_GND/5Vb	5Va-/5Vb+
6	15Vo_GND/5Va	15V-/5Va+
7	15Vo	15V+

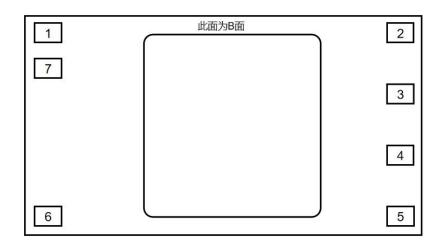

2. 立插

FS06P18GPSNA

引脚信息

	定义	备注	
1	VEN	浮空时正常工作, 拉低时处于休眠模式	
2	Vin+	标称输入 12V (9-18V)	
3	15Vo	15V+	
4	5Vb_GND	5Vb-	
5	5Va_GND/5Vb	5Va-/5Vb+	
6	15Vo_GND/5Va	15V-/5Va+	
7	Vin-	输入地	
8	Vin-	输入地	

3. 平贴



FS06P18GPMNA(T面)

FS06P18GPMNA(B面)

引脚信息

引脚	定义	备注
1	VEN	浮空时正常工作, 拉低时处于休眠模式
2	5Vb_GND	5Vb-
3	5Va_GND/5Vb	5Va-/5Vb+
4	15Vo_GND/5Va	15V-/5Va+
5	15Vo	15V+
6	Vin+	标称输入 12V (9-18V)
7	Vin-	输入地

技术参数

		额定输出1			额定输出 2						
电源型号	输入电压	应用	电压	电流	功率	电压		电流	功	率	
	V	参照 P10	V	mA	w	v		mA	1	W	
		IGBT	+15	240	3. 6	-10		240	2.	. 4	
		SiC	+20	240	4. 8	-5		240	1.	. 2	
		MOSFET	+15	300	4. 5	-5		300	1.	. 5	
FS06P	0.10	9-18 性能			1整率 ¹	纹波噪声² mVp−p	负	载调整率 %	ξ 1		噪声 ² p-p
	9 10		典型	最大	典型	最大	典型	最大	典型	最大	
		IGBT	3	5	110	150	3	5	60	100	
		SiC	3	5	110	150	3	5	60	100	
		MOSFET	3	5	110	150	3	5	60	100	

注1:50%-100%负载调整率;

注2:参照纹波测试方法,带宽限制 20MHZ。

输入特性

参数	条件	最小值	典型值	最大值	单位
输入电压范围	推荐输入电压	9	12	18	V
输入纹波电流	100%负载		170		mA
	VEN 引脚拉低时电流		0. 5		mA
VEN ¹	输入高电平	2		60	V
	输入低电平	-1	0	0. 5	V

注 1: VEN 为高阻抗 TTL 输入, 使用时需注意布局避免噪声影响。

输出特性

参数	条件	最小值	典型值	最大值	 单位
最小负载	模块空载时 15V 路和 5V 路电压分别为 15.5V/6.0V	1			%
电压精度	输出 1		1		%
电压相 及	输出 2		4		%
线性调整率	9Vin→18Vin, 50%负载			2	%
负载调整率	1%负载→100%负载			5	%
50%-100%负载的峰值偏差			3		%
瞬态响应	调整时间		0.3		ms

一般特性

参数	条件	最小值	典型值	最大值	单位
开关频率	100%负载			360	kHz
启动延时	输入电压与输出电压延时		3. 5		ms

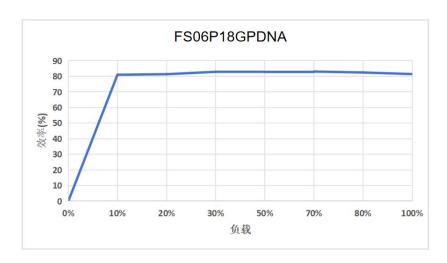
绝缘特性

参数	条件	最小值	典型值	最大值	单位
绝缘测试电压	持续测试 1 分钟,漏电流小于 1mA	6500			VDC
绝缘电阻	1kVDC	100			GΩ
安全标准	电气与	爬电距离 8mm			

保护特性

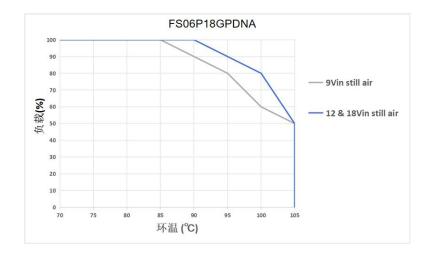
参数	说明	最小值	典型值	最大值	单位
输入欠压保护	保护阈值		7. 5		V
输入过压保护	保护阈值		21. 5		V
过流保护	全压 25V 过流保护阈值		0.3		A
过温保护	过温保护阈值		160		$^{\circ}\! \mathbb{C}$

温度特性


参数	说明	最小值	典型值	最大值	单位
运行温度	参照降额曲线	-40		105	$^{\circ}\!$
存储温度		-50		125	$^{\circ}\!$
常温温升	12Vin,满载 6W, 25℃,无风		40		$^{\circ}\! \mathbb{C}$

绝对最大额定值

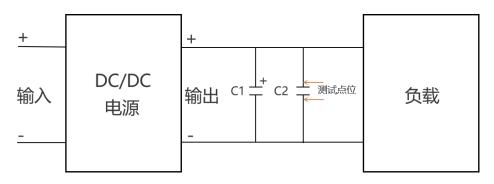
	说明	最小值	典型值	最大值	单位
容性负载	20V			220	
	15V			330	r.
	-10V			330	uF
	-5V			490	
输入电压	21.5V-35V 触发过压保护	-0.3		35	V
波峰焊	波峰焊曲线不超过 IEC 61760-1 推荐的曲线				


注: 如无特殊说明,以上参数特性数据都是基于12V输入,环温25℃测试。

效率 VS 负载

降额曲线

环境验证测试

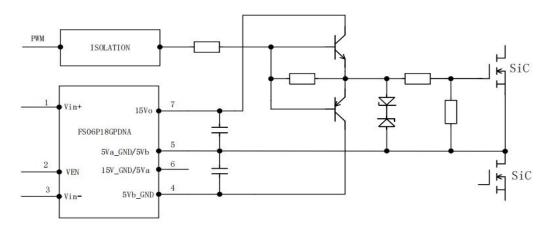

测试	标准	条件
Temperature cycling	MIL-STD 883	在设置为-55℃和+125℃的两个腔室之间循环 10 次。停留时间不得少于 10 分钟,负载应在 15 分 钟内达到指定温度。
HAST (Unbiased)	JEDEC JESD22-A118	96 小时+2/-0 小时,130℃±2℃,85%±5%相对湿度。
High Temperature Storage	JEDEC JESD22-A103	125℃+10/-10℃≥1000 小时
Vibration	BS EN 61373 BS EN 60068-2-64	5-150HZ。各轴电平-垂直、横向和纵向: 5.72m/s2 rms。每轴5小时。 峰值系数: 3σ。装置通过引脚固定。
Shock	BS EN 61373	测试持续时间为 30 毫秒,在 3 个相互垂直的轴上各冲击 3 次 (共冲击 18 次)。 在每个轴的水平:垂直、横向和纵向:50m/s2。 装置通过销钉固定。
Solderability	IPC/ECA J-STD-002D	模块在 155℃的温度下烘烤 4 小时, 72 小时后在助焊剂中浸渍 10 秒钟。然后在 255℃±5℃的焊锡锅中浸渍 5 秒钟(96SC 锡/银/铜)
Solvent cleaning	/	溶剂-Novec71IPA 和 TopkleanEL-20A。 脉冲超声波浸泡 45℃-65℃
Solvent Resistance	MIL-STD 883	将模块和刷毛部分浸入异丙醇中至少1分钟。 模块刷3次,第三次后吹干部件并进行检查。
Solder heat	JEDEC JESD22-B106	将测试样品置于 260±5℃的熔融焊料浴中 10+2/-0秒 (96SC 锡/银/铜)。将引线浸入焊料 浴中,直至距离器件本体1毫米以内。
Lead Integrity (Adhesion)	MIL-STD 883	导线弯曲 90°直至断裂。
Lead Integrity(Fatigue)	MIL-STD 883	导线弯曲成 15°角。每根导线都要经历 3 个周期。

纹波和噪声测试方法

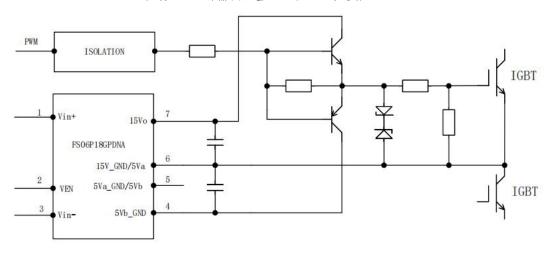
测试	标准	
C1	10uF 电解电容, 额定电压至少为模块输出电压的 1.5 倍。	
C2	1uF X7R 陶瓷电容, 额定电压至少为模块输出电压的 3 倍。	

纹波噪声测试示意图

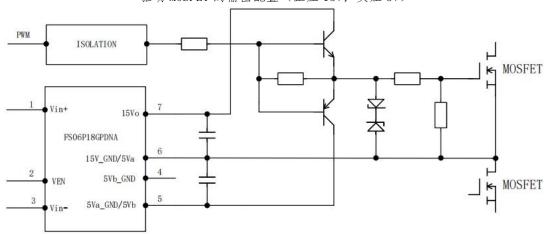
输出配置


1. 平插

端口	引脚	IGBT	SiC	MOSFET
15Vo	7	+15V 0. 24A	+20V 0. 24A	+15V 0. 3A
15V_GND/5Va	6	OV	浮空	OV
5Va_GND/5Vb	5	浮空	OV	-5V 0. 3A
5Vb_GND	4	-10V 0. 24A	−5V 0. 24A	浮空

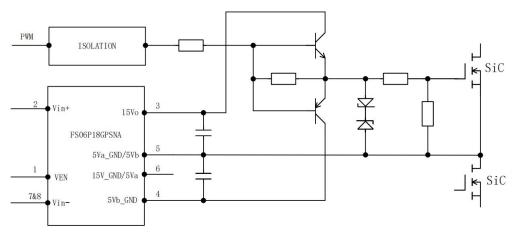


应用原理图

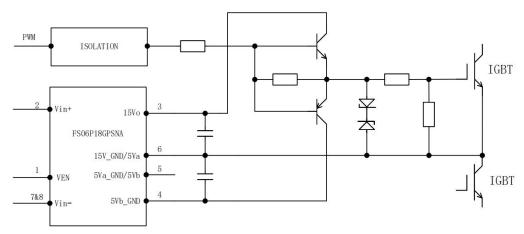

驱动 SiC 的输出配置(正压 20V, 负压 5V)

驱动 IGBT 的输出配置 (正压 15V, 负压 10V)

驱动 MOSFET 的输出配置(正压 15V, 负压 5V)


2. 立插

输出配置


端口	引脚	IGBT	SiC	MOSFET
15Vo	3	+15V 0. 24A	+20V 0. 24A	+15V 0. 3A
15V_GND/5Va	6	OV	浮空	OV
5Va_GND/5Vb	5	浮空	OV	-5V 0. 3A
5Vb_GND	4	-10V 0. 24A	−5V 0. 24A	浮空

应用原理图

驱动 SiC 的输出配置 (正压 20V, 负压 5V)

驱动 IGBT 的输出配置 (正压 15V, 负压 10V)

J MOSFET MOSFET

5Vb_GND

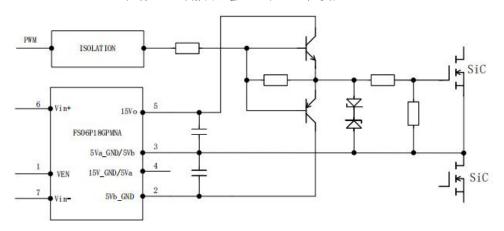
5Va_GND/5Vb

PWM ISOLATION MOSFET

Vin+ 15Vo
FS06P18GPSNA 6
15V_GND/5Va 6

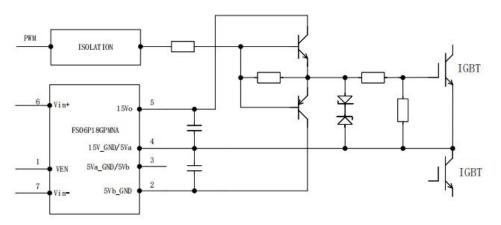
驱动 MOSFET 的输出配置(正压 15V, 负压 5V)

3. 平贴

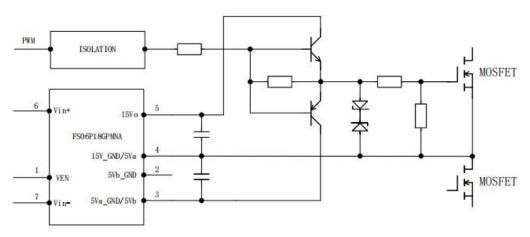

输出配置

7&8

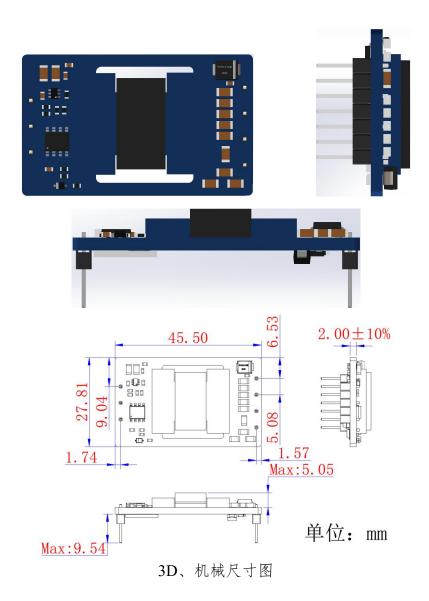
端口	引脚	IGBT	SiC	MOSFET
15Vo	5	+15V 0. 24A	+20V 0. 24A	+15V 0. 3A
15V_GND/5Va	4	OV	浮空	OV
5Va_GND/5Vb	3	浮空	OV	-5V 0. 3A
5Vb_GND	2	−10V 0. 24A	−5V 0. 24A	浮空

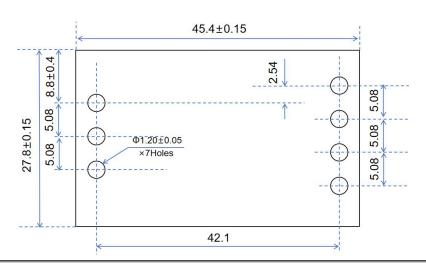

应用原理图

驱动 SiC 的输出配置(正压 20V, 负压 5V)



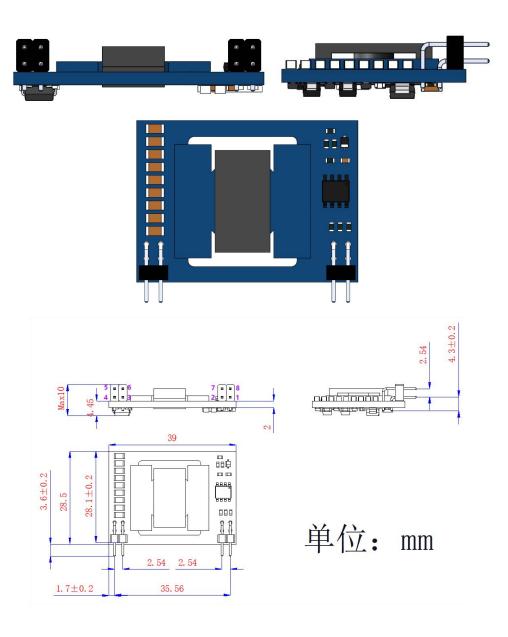
驱动 IGBT 的输出配置(正压 15V, 负压 10V)


驱动 MOSFET 的输出配置(正压 15V, 负压 5V)

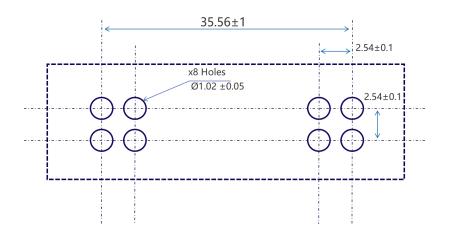


3D 和机械尺寸图

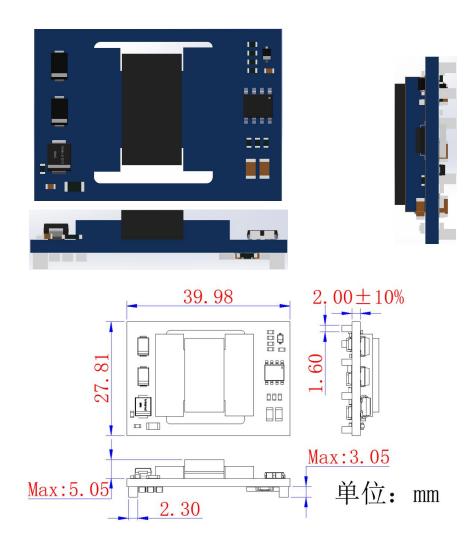
1.平插



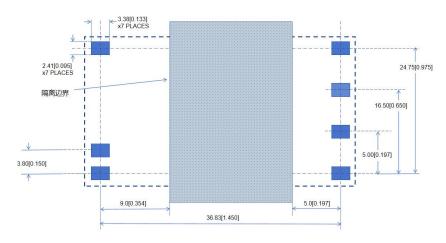
推荐 PCB 布局



2. 立插



推荐 PCB 布局



3. 平贴

推荐 PCB 布局

所有尺寸以毫米(mm)为单位 (括号内为英寸in) 。以毫米为准。

注:1. 板厚公差±10%;

2. 其余尺寸公差参考 GB/T1804-m。

变更信息

日期	更新内容	版本
2025. 06. 06	正式版	V1. 0

订购信息

FS06P 系列为 SiC MOSFET、Si-MOSFET 和 IGBT 紧凑型驱动电源产品,可以支持多种驱动电压配置。如有购买需求,请联系工作人员,我们将提供最符合您需求的电源模块。

电源型号	贴装方式
FS06P18GPDNA	平插
FS06P18GPMNA	平贴
FS06P18GPSNA	立插

技术支持

Firstack 专业的团队会为您提供业务咨询、技术支持。如有需求联系飞仕得技术销售团队,提供应用手册进一步了解技术应用。

法律免责声明

本说明书对产品做了详细介绍,但不能承诺提供具体的参数对于产品的交付、性能或适用性。本文不提供任何明示或暗示的担保或保证。

Firstack 保留随时修改技术数据及产品规格,且不提前通知的权利。适用 Firstack 的一般交付条款和条件。

联系方式

电话: +86-571 8817 2737

传真: +86-571 8817 3973

邮编: 310011

网址: www.firstack.com

邮箱: sales01@firstack.com

地址: 杭州市上城区同协路 1279 号西子智慧产业园 5 号楼 4-5 楼

