

2FHC0435 产品数据手册

概述

2FHC0435 是基于 Firstack 基于智能芯片技术自主研发的高性能、双通道驱动核, 支持最高 1700V 的 IGBT 模块。外围应用电路简单,客户无需在调试驱动核上投入精力, 即可安全可靠的驱动 IGBT。

核心优势:

- 单路 4W, ±35A
- 最大支持 30kHz 的应用
- 短路保护(软关断)
- 支持多电平应用
- 智能故障管理

典型应用:

- 电能质量
- 特种电源
- 开关电源
- 变频器
- 储能逆变器



图 1 2FHC0435

功能框架图

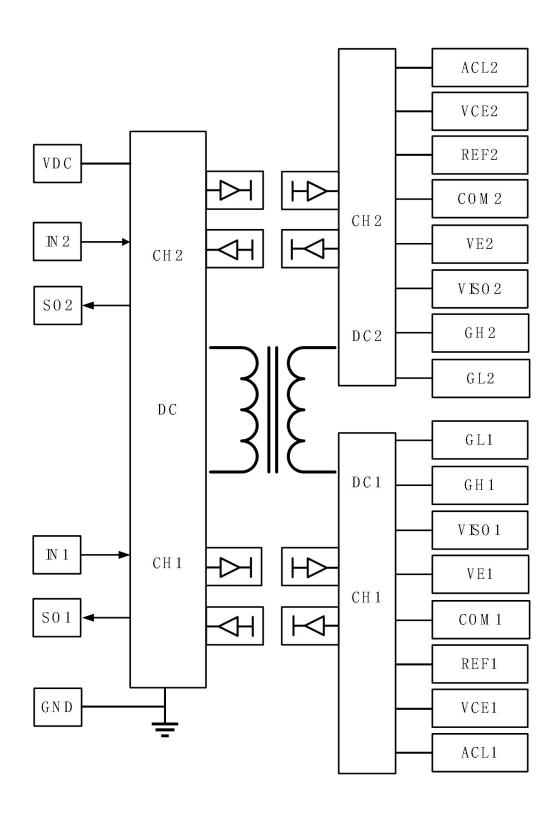


图 2 功能框架图

引脚定义

端子	引脚	定义	功能
	1	VDC	供电电源
	2	S01	通道1状态输出,正常为高阻,故障为低
	3	S02	通道2状态输出,正常为高阻,故障为低
	4	NC	NC
D1	5	NC	NC
P1	6	VCC	原边控制电源
	7	GND	接地端
	8	IN1	通道1信号输入端
	9	IN2	通道 2 信号输入端
	10	GND	接地端
	11	ACL1	通道 1 有源钳位
	12	VCE1	通道 1 的 VCE 检测:通过二极管/电阻网络连接到模块集电极
	13	REF1	设置通道 1 的 VCE 检测阈值: 通过电阻连接到 VE1
DO	14	COM1	通道 1 负电源
P2	15	VE1	通道 1 发射极:连接到功率器件的(辅助)发射极
	16	VIS01	通道1正电源
	17	GH1	通道1门极开通管脚
	18	GL1	通道1门极关断管脚
	22	ACL2	通道2有源钳位
	23	VCE2	通道 2 的 VCE 检测:通过二极管/电阻网络连接到模块集电极
	24	REF2	设置通道 2 的 VCE 检测阈值: 通过电阻连接到 VE2
D0	25	COM2	通道2负电源
Р3	26	VE2	通道 2 发射极:连接到功率器件的(辅助)发射极
	27	VISO2	通道2正电源
	28	GH2	通道2门极开通管脚
	29	GL2	通道2门极关断管脚

技术参数

最大允许值

参数	说明	最小值	最大值	单位
供电电压 V _{DC}	对地	0	15. 5	V
输入输出逻辑电平	对地	0	15. 5	V
故障返回口电流能力	故障状态下	0	10	mA
当时私山小五	@85℃		4	W
单路输出功率	@70℃		6	W
门极最大输出电流	@85℃	35	35	A
》2011年11年11年11年11年11年11年11年11年11年11年11年11年	原边对副边	5000		$V_{\scriptscriptstyle RMS}$
测试电压(50Hz/1min)	副边对副边	4000		$V_{\scriptscriptstyle RMS}$
最大直流母线电压			1200	V
工作温度		-40	85	$^{\circ}$ C
存储温度		-40	90	$^{\circ}\!$

电源参数

参数	说明	最小值	典型值	最大值	单位
供电电压 V _{IIC}	对地	14. 5	15	15. 5	V
电源电流 I _{IC}	不带载		0. 11		A
耦合电容 C ₁₀	原副边		18		pF
欠压阈值	原边电压		12		V

门极驱动参数

输出电平	说明	最小值	典型值	最大值	单位
门极电压 V _{GE}	开通 (ON)	14. 5	15	15. 5	V
门极电压 V _{GE}	关断 (OFF)	-7	-8	-9	V

输入输出逻辑

参数	说明	最小值	典型值	最大值	单位
输入信号 INx	对地	4. 5	15	15. 5	V
输入阻抗	对地		240		$k\;\Omega$
开通阈值	V(IN _X)	3. 2			V
关断阈值	V(IN _X)			1. 1	V
故障输出 SOx	保护状态@Io<10mA			0.35	V
NOD Itt 12	直接模式	通过软	件设定,无	需配置	
MOD 模式	半桥模式	通过软	件设定,无	需配置	

短路保护

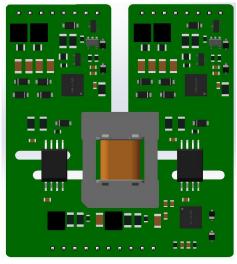
参数	说明	最小值	典型值	最大值	单位
V _{CE} 监测阈值	短路保护监测阈值 @Rthx=68KΩ	10. 1			V
响应时间	CH1, 注 1	4			μs
J.G. 777, #1, 1 ₆₋₁	CH2, 注 1	4		μѕ	
软关断时间	软关断动作时间		4. 16		μѕ

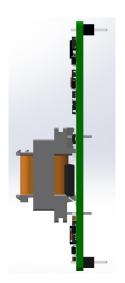
时间特征

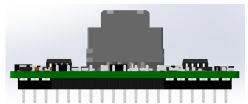
参数	说明	最小值 典型	值 最大值	单位
开通延时	注 2	650		ns
关断延时	注 3	65	ns	
上升时间	注 4	10		ns
下降时间	注 5	20		ns
故障阻断时间	副边门极封波	80		ms
故障返回时间	故障低电平时间,注6	10		ms

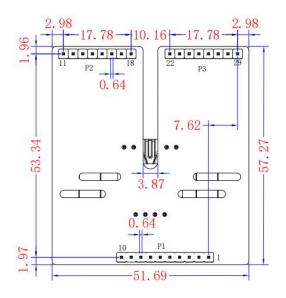
电气绝缘

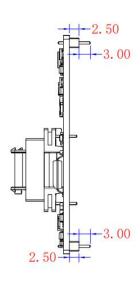
参数	说明	最小值	典型值	最大值	单位
爬电距离,注7	原副边,注8	8			mm
	副副边	12			mm
山 与 词 欧	原副边,注8	8			mm
电气间隙	副副边	6. 5			mm


如无特殊说明,以上数据都是基于 25℃环温以及 V_{nc}=15V 环境下测试。


注解说明:


- 1. 响应时间:短路保护响应时间指从发生故障到开始执行软关断的时间,该参数($4\,\mu\,s$)基于"2FHC0435应用手册"中的 Rax=120k Ω 、Cax=0pF 时测得;
- 2. 开通延时: 从原边输入的 PWM 信号上升沿传输到副边门极驱动上升沿所需的时间;
- 3. 关断延时: 从原边输入的 PWM 信号下降沿传输到副边门极驱动下降沿所需的时间;
- 4. 上升时间:从门极关断电压(-8V)的10%至门极开通电压(+15V)的90%的时间量;
- 5. 下降时间:从门极开通电压(+15V)的90%至门极关断电压(-8V)的时间量;
- 6. 故障返回时间: 短路=10ms, 副边欠压=20ms, 原边欠压=40ms;
- 爬电距离:参照 IEC61800-5-1-2007,满足海拔 2km 以下,污染等级 2 的基本绝缘要求;
- 8. 该值参考隔离器件爬电距离/电气间隙参数。




3D 和机械尺寸图

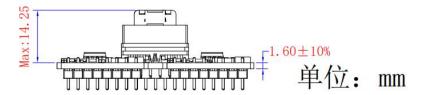


图 4 3D 和尺寸图

注: 1. 板厚公差±10%;

2. 其余尺寸公差参考 GB/T1804-m。

推荐尺寸

标号	推荐接插针焊盘尺寸	推荐通孔尺寸
1	Ф=2mm	Φ=1.02mm

订购信息

2FHC0435 可以支持多个厂家不同型号的不同封装模块。选型列表中产品适用于一般交付条件。

驱动型号	工作模式	INx	S0x	说明
2FHC0435C17A1	直接	5-15V	OD	无铅, 不喷漆
2FHC0435C17B1	半桥	5-15V	OD	无铅, 不喷漆

技术支持

Firstack 专业的团队会为您提供业务咨询、技术支持。如有需求联系飞仕得技术销售团队,提供应用手册进一步了解技术应用。

法律免责声明

本说明书对产品做了详细介绍,但不能承诺提供具体的参数对于产品的交付、性能或适用性。本文不提供任何明示或暗示的担保或保证。

Firstack 保留随时修改技术数据及产品规格,且不提前通知的权利。适用 Firstack 的一般交付条款和条件。

联系方式

电话: +86-571 8817 2737

传真: +86-571 8817 3973

邮编: 310011

网址: www.firstack.com

邮箱: sales01@firstack.com

地址: 杭州市上城区同协路 1279 号西子智慧产业园 5 号楼 4-5 楼

